3.2047 \(\int \frac{1}{(a+\frac{b}{x^3})^{3/2} x^2} \, dx\)

Optimal. Leaf size=248 \[ -\frac{2 \sqrt{2+\sqrt{3}} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right ) \sqrt{\frac{a^{2/3}-\frac{\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac{b^{2/3}}{x^2}}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}\right ),-7-4 \sqrt{3}\right )}{3 \sqrt [4]{3} a \sqrt [3]{b} \sqrt{a+\frac{b}{x^3}} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}}}-\frac{2}{3 a x \sqrt{a+\frac{b}{x^3}}} \]

[Out]

-2/(3*a*Sqrt[a + b/x^3]*x) - (2*Sqrt[2 + Sqrt[3]]*(a^(1/3) + b^(1/3)/x)*Sqrt[(a^(2/3) + b^(2/3)/x^2 - (a^(1/3)
*b^(1/3))/x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)/x)/((1 +
 Sqrt[3])*a^(1/3) + b^(1/3)/x)], -7 - 4*Sqrt[3]])/(3*3^(1/4)*a*b^(1/3)*Sqrt[a + b/x^3]*Sqrt[(a^(1/3)*(a^(1/3)
+ b^(1/3)/x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0880958, antiderivative size = 248, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {335, 199, 218} \[ -\frac{2 \sqrt{2+\sqrt{3}} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right ) \sqrt{\frac{a^{2/3}-\frac{\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac{b^{2/3}}{x^2}}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}} F\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}\right )|-7-4 \sqrt{3}\right )}{3 \sqrt [4]{3} a \sqrt [3]{b} \sqrt{a+\frac{b}{x^3}} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}}}-\frac{2}{3 a x \sqrt{a+\frac{b}{x^3}}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b/x^3)^(3/2)*x^2),x]

[Out]

-2/(3*a*Sqrt[a + b/x^3]*x) - (2*Sqrt[2 + Sqrt[3]]*(a^(1/3) + b^(1/3)/x)*Sqrt[(a^(2/3) + b^(2/3)/x^2 - (a^(1/3)
*b^(1/3))/x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)/x)/((1 +
 Sqrt[3])*a^(1/3) + b^(1/3)/x)], -7 - 4*Sqrt[3]])/(3*3^(1/4)*a*b^(1/3)*Sqrt[a + b/x^3]*Sqrt[(a^(1/3)*(a^(1/3)
+ b^(1/3)/x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)^2])

Rule 335

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rule 199

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (In
tegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[p]
)

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rubi steps

\begin{align*} \int \frac{1}{\left (a+\frac{b}{x^3}\right )^{3/2} x^2} \, dx &=-\operatorname{Subst}\left (\int \frac{1}{\left (a+b x^3\right )^{3/2}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{2}{3 a \sqrt{a+\frac{b}{x^3}} x}-\frac{\operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^3}} \, dx,x,\frac{1}{x}\right )}{3 a}\\ &=-\frac{2}{3 a \sqrt{a+\frac{b}{x^3}} x}-\frac{2 \sqrt{2+\sqrt{3}} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right ) \sqrt{\frac{a^{2/3}+\frac{b^{2/3}}{x^2}-\frac{\sqrt [3]{a} \sqrt [3]{b}}{x}}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}} F\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}}\right )|-7-4 \sqrt{3}\right )}{3 \sqrt [4]{3} a \sqrt [3]{b} \sqrt{a+\frac{b}{x^3}} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\frac{\sqrt [3]{b}}{x}\right )^2}}}\\ \end{align*}

Mathematica [C]  time = 0.0218416, size = 57, normalized size = 0.23 \[ \frac{2 \left (\sqrt{\frac{a x^3}{b}+1} \, _2F_1\left (\frac{1}{6},\frac{1}{2};\frac{7}{6};-\frac{a x^3}{b}\right )-1\right )}{3 a x \sqrt{a+\frac{b}{x^3}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b/x^3)^(3/2)*x^2),x]

[Out]

(2*(-1 + Sqrt[1 + (a*x^3)/b]*Hypergeometric2F1[1/6, 1/2, 7/6, -((a*x^3)/b)]))/(3*a*Sqrt[a + b/x^3]*x)

________________________________________________________________________________________

Maple [B]  time = 0.009, size = 1822, normalized size = 7.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b/x^3)^(3/2)/x^2,x)

[Out]

-2/3/((a*x^3+b)/x^3)^(3/2)/x^5*(a*x^3+b)/a^2/(-b*a^2)^(1/3)*(2*I*(x*(a*x^3+b))^(1/2)*(-(I*3^(1/2)-3)*x*a/(-1+I
*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-
b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1
/2)*EllipticF((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1
+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*3^(1/2)*x^2*a^2-4*I*(x*(a*x^3+b))^(1/2)*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(
-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3
)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*Ellipti
cF((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))
/(I*3^(1/2)-3))^(1/2))*(-b*a^2)^(1/3)*3^(1/2)*x*a+2*I*(x*(a*x^3+b))^(1/2)*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(
-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3
)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*Ellipti
cF((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))
/(I*3^(1/2)-3))^(1/2))*(-b*a^2)^(2/3)*3^(1/2)-2*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2
)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*
a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*a/(-1
+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(x*
(a*x^3+b))^(1/2)*x^2*a^2+4*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2
)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*
a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b
*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-b*a^2)^(1/3)*(x*(a*x^3
+b))^(1/2)*x*a-2*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*
a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3)
)/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3
)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-b*a^2)^(2/3)*(x*(a*x^3+b))^(1/2)
+I*(1/a^2*x*(-a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)-2*
a*x-(-b*a^2)^(1/3)))^(1/2)*(-b*a^2)^(1/3)*3^(1/2)*x*a-3*x*a*(-b*a^2)^(1/3)*(1/a^2*x*(-a*x+(-b*a^2)^(1/3))*(I*3
^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3)))^(1/2))/(I*3^(1/2)
-3)/(1/a^2*x*(-a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)-2
*a*x-(-b*a^2)^(1/3)))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a + \frac{b}{x^{3}}\right )}^{\frac{3}{2}} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x^3)^(3/2)/x^2,x, algorithm="maxima")

[Out]

integrate(1/((a + b/x^3)^(3/2)*x^2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{x^{4} \sqrt{\frac{a x^{3} + b}{x^{3}}}}{a^{2} x^{6} + 2 \, a b x^{3} + b^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x^3)^(3/2)/x^2,x, algorithm="fricas")

[Out]

integral(x^4*sqrt((a*x^3 + b)/x^3)/(a^2*x^6 + 2*a*b*x^3 + b^2), x)

________________________________________________________________________________________

Sympy [A]  time = 1.28943, size = 37, normalized size = 0.15 \begin{align*} - \frac{\Gamma \left (\frac{1}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{3}, \frac{3}{2} \\ \frac{4}{3} \end{matrix}\middle |{\frac{b e^{i \pi }}{a x^{3}}} \right )}}{3 a^{\frac{3}{2}} x \Gamma \left (\frac{4}{3}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x**3)**(3/2)/x**2,x)

[Out]

-gamma(1/3)*hyper((1/3, 3/2), (4/3,), b*exp_polar(I*pi)/(a*x**3))/(3*a**(3/2)*x*gamma(4/3))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a + \frac{b}{x^{3}}\right )}^{\frac{3}{2}} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x^3)^(3/2)/x^2,x, algorithm="giac")

[Out]

integrate(1/((a + b/x^3)^(3/2)*x^2), x)